How internal waves influence the vertical distribution of zooplankton
نویسندگان
چکیده
1. We present data with a high spatio-temporal resolution from a 72-h field survey in Bautzen Reservoir (Saxony, Germany). The aims of this survey were to observe hydrophysical processes during a period of unstable stratification in spring and investigate the effect of wind-induced internal waves on the vertical distribution of zooplankton. 2. Wind velocities up to 10 m s 1 caused a strong downwelling event of warm water at the sampling site and led to the generation of internal waves with an amplitude of 4 m. 3. The zooplankton community, which was dominated by Daphnia galeata, inhabited epilimnetic waters. Downwelling enlarged the thickness of the epilimnetic layer and, hence, led to high zooplankton abundances down to relatively deep water strata indicating lateral transport of zooplankton. As a consequence, area-specific zooplankton abundances increased considerably (max. fourfold) during downwelling. 4. We conclude that classical limnological field sampling, such as for monitoring purposes, can lead to severely biased estimates of zooplankton abundance due to the interfering effects of hydrophysical processes like internal waves. 5. Backscattering strengths measured by a simultaneously deployed Acoustic Doppler Current Profiler (600 kHz) were found to be correlated with estimated zooplankton abundances based on plankton samples.
منابع مشابه
Vertical Distribution of Zooplankton and Copepod Community Structure in the Straits of Malacca
Vertical distribution of zooplankton biomass and abundance, copepod taxonomic composition and species diversity were analyzed at eight stations during an oceanographic expedition along the Straits of Malacca. Samples were collected in vertical hauls (140 μm mesh using 45 cm diameter NORPAC net) from four depth strata. Zooplankton biomass was higher at 10-20 m depth in the central and southern p...
متن کاملPhysical control of zooplankton distribution at the Strait of Gibraltar during an episode of internal wave generation
We analyzed the effect of physical forcing on zooplankton biomass distribution in the Strait of Gibraltar as a function of tidal phase. A set of 5 Longhurst-Hardy-Plankton-Recorder (LHPR) casts were made along the main channel of the Strait during different phases of the tidal cycle to determine how the hydrological processes taking place in the strait (mainly internal wave generation) influenc...
متن کاملInternal wave-mediated shading causes frequent vertical migrations in fishes
We provide evidence that internal waves cause frequent vertical migrations (FVM) in fishes. Acoustic data from the Benguela Current revealed that pelagic scattering layers of fish below ~140 m moved in opposite phases to internal waves, ascending ~20 m towards the wave trough and descending from the wave crest. At the trough, the downward displacement of upper waters and the upward migration of...
متن کاملVertical distribution of zooplankton in subalpine and alpine lakes: Ultraviolet radiation, fish predation, and the transparency-gradient hypothesis
The transparency-gradient hypothesis argues that ultraviolet radiation (UV) is a primary determinant of the vertical distribution of zooplankton in transparent lakes with fewer fish, while fish predation is the primary driver in less transparent lakes where fish are more abundant. We measured vertical profiles of UV, photosynthetically active radiation (PAR, essentially visible light used as a ...
متن کاملVertical distribution and diel patterns of zooplankton abundance and biomass at Conch Reef, Florida Keys (USA)
Zooplankton play an important role in the trophic dynamics of coral reef ecosystems. Detailed vertical and temporal distribution and biomass of zooplankton were evaluated at four heights off the bottom and at six times throughout the diel cycle over a coral reef in the Florida Keys (USA). Zooplankton abundance averaged 4396 +/- 1949 SD individuals m(-3), but temporal and spatial distributions v...
متن کامل